Literature Cited

- (1) Bloom, H., Doroszkowski, A. A., Tricklebank, S. B., Aust. J. Chem., 18, 1171 (1965)
- (2) Bryngdahl, O., Ark. Fys., 21, 289 (1962).
 (3) Cooke, J. W., ORNL-4831 (1973).
- (4) Gambill, W. R., *Chem. Eng.*, **66**, 129 (1959).
- (5) Gustafsson, S. E., Z. Naturforsch. A, 22, 1005 (1967).
- (6) Gustafsson, S. E., Halling, N.-O., Kjellander, R. A. E., Z. Naturforsch. A, 23, 44 (1968)
- Gustafsson, S. E., Karawacki, E., *Appl. Opt.*, **14**, 1105 (1975).
 Janz, G. J., "Molten Salt Handbook", Academic Press, New York, N.Y.,
- (8) Janz, G. J. 1967, pp 42, 200.

- (9) Kato, Y., Kobayasi, K., Araki, N., Furukawa, K., J. Phys. E, 8, 461 (1975)
- (10) Kirst, W. E., Nagle, W. M., Castner, J. B., Trans. Am. Inst. Chem. Eng., 36, 371 (1940)
- (11)McDonald, J., Ph.D. Thesis, University of Minnesota, 1969.
- McLaughlin, E., Chem. Rev., 64, 389 (1964).
- (13) Touloukian, Y. S., "Thermophysical Properties of Matter" (TPRC Data
- (13) Touloukian, Y. S., "Thermophysical Properties of Matter" (IPRC Data Series) Vol. 10, IFI/Plenum Data Corp., New York, N.Y., 1971.
 (14) Turnbull, A. G., *Aust. J. Appl. Sci.*, 12, 30 (1961).
 (15) Uhl, V. W., Voznick, H. P., *Chem. Eng. Prog.*, 59, 33 (1963).
 (16) Wendelöv, L. W., Gustafsson, S. E., Halling, N.-O., Kjellander, R. A. E., *Z. Naturforsch. A*, 22, 1363 (1967).
 (17) White S. P. Devis, H. Z., *Chem. Dhys.* 47, 5402 (1967).
- (17) White, L. R., Davis, H. T., J. Chem. Phys., 47, 5433 (1967).

Received for review August 17, 1976. Accepted December 16, 1976.

Apparent Molar Volumes of Some Complex Cyanides in Aqueous Solutions at 15–60 °C

Geoffrey Curthoys and John G. Mathieson^{†*}

Department of Chemistry, University of Newcastle, N.S.W., 2308, Australia

The apparent molar volumes (ϕ_{y}) of a series of six complex cyanide compounds have been measured in aqueous solutions in the concentration range 0.001–0.5 mol dm⁻³, and at five temperatures in the range 15-60 °C. The compounds studied are K[Ag(CN)₂], K₂[Ni(CN)₄], $K_3[Co(CN)_6], K_3[Fe(CN)_6], K_4[Fe(CN)_6], and K_4[Mo(CN)_8].$ At higher concentrations (c> 0.05 mol dm⁻³) $\phi_{
m V}$ was determined directly from pycnometer density measurements, while in the lower concentration region the dilatometer technique of Hepler, Stokes, and Stokes was employed.

The apparent molar volumes (ϕ_V) of many simple salts and salts containing large hydrophobic ions have been accurately measured in aqueous solutions (cf. the extensive compilation of Millero (12)). Few data, however, are available for the molar volumes of large hydrophilic ions or complex ions. Therefore we have measured apparent molar volumes as part of an extended study (9, 10) of the thermodynamic and transport properties of aqueous solutions of some complex cyanide compounds. In this paper we report ϕ_V measurements for $K[Ag(CN)_2], K_2[Ni(CN)_4], K_3[Co(CN)_6], K_3[Fe(CN)_6],$ K₄[Fe(CN)₆], and K₄[Mo(CN)₈]. Studies were made at 15, 25, 35, 45, and 60 °C using pycnometric density determinations, accurate to $\pm 1 \times 10^{-5}$ g cm⁻³, for solutions of concentration 0.5 > c > 0.05 mol dm⁻³. For solutions of lower concentration pycnometry does not yield sufficiently accurate ϕ_V values (see below) and the dilatometer technique of Hepler, Stokes, and Stokes (6) was employed in the concentration region 0.001 <c < 0.05 mol dm⁻¹. Infinite dilution values of ϕ_V (i.e., ϕ_V^0) have been determined by an extrapolation procedure which assumes Debye-Hückel limiting law behavior at low concentrations.

Experimental Section

Density measurements were made according to recommended methods (15) using two Sprengel-Ostwald pycnometers of approximately 30-cm³ capacity with arms made of capillary

tubing of 0.3 mm internal diameter. Before weighing, the filled pycnometers were equilibrated for about an hour in a large (600 L) efficiently stirred, insulated bath, whose temperature was controlled to $\pm 5 \times 10^{-4}$ °C or better by a mercury-toluene regulator operating a 60-W light bulb as the on-off heater. Buoyancy corrections were made and duplicate measurements agreed to $\pm 1 \times 10^{-5}$ g cm⁻³. The bath temperature was calibrated against standardized mercury in glass thermometers. This bath was also used for the dilatometer measurements.

Dilatometer measurement techniques essentially similar to those described by Hepler, Stokes, and Stokes (6) were employed in this study. Dilatometers from 300 cm³ to 1 dm³ with capillaries of 1.00 mm diameter and with capsules from 3 to 60 cm³ provided an adequate range of final concentrations. The measurement consists of observing the change in height (corrected for hydrostatic head) of solution in the capillary ($\Delta h(\text{corr})$) as concentrated solution in the capsule, of known ϕ_V from density measurement, is mixed with pure solvent in the dilatometer flask. Since the capillary diameter is known $\Delta h(corr)$ can be directly related to the volume change on dilution, Δv .

Calculations and Errors

The apparent molar volume of a solute in a solution of density d, g cm⁻³, is given by,

$$\phi_{\rm V} = \overline{M}_2 / d_0 - 1000 (d - d_0) / c d_0 \dots$$
(1)

where M_2 is the molecular weight of the solute, d_0 is the solvent density, and c is the solute concentration in mol dm⁻³. Errors in the concentration of carefully prepared solutions do not affect $\phi_{\rm V}$ significantly; however, differentiation of eq 1 at constant concentration gives,

$$\delta\phi_{\rm V} = \left|\frac{1000}{c}\frac{\delta d}{d}\right| \tag{2}$$

Thus for a given uncertainty in density, the uncertainty in ϕ_V is inversely proportional to concentration. Using an uncertainty in density appropriate for our pycnometers, i.e., $\delta d/d = 2 \times 10^{-5}$ $\delta\phi_V$ is already 0.2 cm³ mol⁻¹ at 0.1 mol dm⁻³ and increases rapidly at lower concentrations.

In dilatometer experiments the apparent molar volume of the final dilute solution ϕ_V^{final} is related to that of the initial concentrated solution, ϕ_{V}^{init} (determined by density measurement)

[†] Department of Chemistry, Monash University, Wellington Road, Clayton, Victoria, 3168, Australia

Figure 1. $\phi_{\rm V}$ as a function of $c^{1/2}$ for K₄[Fe(CN)₆] at 15, 25, and 35 °C. Triangles represent data of Hepler, Stokes, and Stokes (*4*). Broken lines are Debye–Hückel limiting slopes.

Figure 2. ϕ_{\vee} as a function of $c^{1/2}$ for K₄[Fe(CN)₆] at 45 and 60 °C. Extrapolated ϕ_{\vee}^{0} values are shown as a function of temperature.

by,

$$\phi_{\mathsf{V}}^{\mathsf{final}} = \phi_{\mathsf{V}}^{\mathsf{init}} + \Delta v/n_2 \tag{3}$$

where n_2 is the number of moles of solute involved in the dilatometer experiment. The error in ϕ_V^{final} is thus the error in ϕ_V^{init} plus that in $\Delta v/n_2$. Since solutions are made up analytically and capsule volumes are accurately calibrated the error in n_2 contributes negligibly to that in ϕ_V^{final} . The error in Δv is due to the uncertainty in $\Delta h(\text{corr})$ (ca. ± 0.003 cm); this is the approximate reproducibility in cathetometer measurements of $\Delta h(\text{corr})$ and includes the influence of temperature variations of $\pm 5 \times 10^{-4}$ °C. To this we add an uncertainty volume change on opening the capsule, of say, half the uncertainty in $\Delta h(\text{corr})$. $\delta \Delta v$ is thus ca. 7×10^{-5} cm³. For a typical capsule of volume 7 cm³, $n_2 =$ $7 \times 10^{-3}c$ mol and.

$$\delta\phi_{\rm V}^{\rm final} = \delta\phi_{\rm V}^{\rm init} + \frac{10^{-2}}{c} \tag{4}$$

If the initial concentration is say 1 mol dm⁻³, $\delta \phi_V^{\text{final}} = 0.02 \text{ cm}^3$ mol⁻¹, typical of the accuracy achieved and claimed by Hepler, Stokes, and Stokes (δ), and apparently accepted for all situations by others. However, for solutions of 0.1 mol dm⁻³, typical for many of our experiments, $\delta \phi_V^{\text{final}}$ rises to $\delta \phi_V^{\text{init}} + 0.1 \text{ cm}^3$ mol⁻¹, or more if smaller capsules are employed to achieve lower final concentrations. Of course the dilatometer method of ϕ_V determination is much more accurate than typical pycnometer density determination for solutions of low concentration.

Materials

 $K_3[Fe(CN)_6]$ and $K_4[Fe(CN)_6]$ were purified by recrystallization of the A.R. grade compounds from conductance water.

Figure 3. Temperature variation of ϕ_V^0 , $\phi_V^0(\mathcal{T}) - \phi_V^0(15 \,^{\circ}\text{C})$ is shown as a function of temperature: Θ , $K_3[Fe(CN)_6]$; \diamond , $K_4[Mo(CN)_8]$; O, $K_4[Fe(CN)_6]$; ∇ , $K_3[Co(CN)_6]$; \Box , $K[Ag(CN)_2]$; \diamond , $K_2[Ni(CN)_4]$. Zeros have been offset in some cases for clarity.

Table I. Analyses of Cyano Complexes

		% C	% N	% metal	% purity
K[Ag(CN) ₂]	Theor	12.0	14.2	54.23	
	Found	11.8	14.2	54.10	99.8
K ₂ [Ni(CN) ₄]	Theor	19.9	22.4	24.36	
	Found	19.4	21.8	24.25	99.5
K ₃ [Co(CN) ₆]	Theor	21.7	25.3	17.73	
	Found	21.6	25.3	17.70	99.8
K ₃ [Fe(CN) ₆]	Theor	21.9	25.5	16.96	
	Found	21.8	25.3	16.95	100.0
K ₄ [Fe(CN) ₆]	Theor	19.5	22.8	15.16	
	Found	19.6	22.8	15.14	99.9
K ₄ [Mo(CN) ₈]-2H ₂ O	Theor	19.3	22.5	19.32	
	Found	19.1	22.3	19.36	100.2

They were dried overnight at 110 °C, (the Fe(II) compound losing its water of crystallization), and then stored in a vacuum desiccator over P₂O₅. The Fe content was estimated gravimetrically as the oxinate.⁶ K_3 [Co(CN)₆] was prepared by the method of Brigelow (2) and the Co content was determined by EDTA titration using pyrocatechol violet as indicator (18). K₄[Mo(CN)₈]. 2H₂O was prepared by the method of Furman and Miller (5) and the metal content was analyzed by titration of the complex with Ce(IV) using o-phenanthrolineiron(II) indicator (5), K₂[Ni(CN)₄] was prepared by the method of Fernelius and Burbage (4), but maintaining excess insoluble Ni(CN)₂ as the complex is formed after further addition of KCN. This procedure eliminates the production of five-coordinate species. Water of crystallization was removed by heating in an oven overnight at 120 °C. Ni was analyzed by EDTA titration using murexide as indicator (16). K[Ag(CN)₂] was prepared by precipitation of AgCN from an equimolar solution of AgNO₃ and KCN. The AgCN was dissolved by further addition of KCN. The formation of higher complexes was avoided by maintaining excess AgCN in the solution which was filtered, reduced in volume on the hot plate, and set aside for crystallization. The complex was recrystallized from conductance water and was dried and stored over P2O5 in a vacuum desiccator. Ag was determined gravimetrically as the chloride (17). Each of the complexes was analyzed for C and N content by the Australian Microanalytical Service. Analyses and purities (based on metal analysis) are shown in Table I.

Water used in the preparation of solutions and in the dilatometer experiments was distilled from an all-glass apparatus and then passed through a mixed bed ion-exchange column and

Tab	le	H
-----	----	---

Temp, °C	Concn, mol dm ⁻³	ϕ_{V} , cm ³ mol ⁻¹	Temp, °C	Concn, mol dm ³	$\phi_{ m V}$, cm ³ mol ⁻¹	Temp, °C	Concn, mol dm ^{~3}	$\phi_{ m V}$, cm ³ mol ⁻¹	Temp, °C	Concn, mol dm ⁻³	$\phi_{ m V},$ cm ³ mol ⁻¹
	K[Ag(CN)	,]		K ₂ [Ni(CN),	4]		K₄[Fe(CN) _e	J		K₄[Mo(CN)	a]
15	0.500	71.13	15	0.200	114.89	45	0.500	139.44	45	0.200	189.64
	0.250	70.11		0.020 77	112.83		0.250	133.16		0.100	183.99
	0.009 85	69.59		0.005 67	112.38		0.100	128.33		0.050	179.85
	0.003 50	69.43		0.002 01	111.97		0.009 85	121.03		0.002 84	172.70
	0.002 69	69.37		0.001 55	111.65		0.006 61	118.49		0.002 84	172.28
25	0.500	73.19	25	0.200	116.48		0.005 08	117.68		0.001 00	169.84
	0.250	72.66		0.100	115.73		0.003 32	117.47		0.000 51	169.53
	0.009 85	71.88		0.020 77	114.68		0.00176	116.49			
	0.003 50	71.78		0.005 67	113.90	60	0.500	138.24	60	0.092 7	183.33
	0.002 69	71.89		0.002 01	113.77		0.100	126.27		0.001 22	170.00
	0.001 76	71.98		0.002 01	113.58		0.006 61	118.47		0.001 22	170.08
35	0.500	74.88		0.001 55	113.59		0.001 32	112.07			
	0.250	74.24		0.001 01	113.59			1			1
	0.009 85	73.70	35	0.200	118.49	16	K3[CO(CN)	3	15	K3[Fe(UN)	6] 166.01
	0.006 61	73.54		0.100	117.72	15	0.200	148.28	15	0.500	155.01
	0.003 50	73.38		0.020 77	116.26		0.100	143.88		0.700	148.79
	0.001 76	73.45		0.005 67	115.68		0.02077	143.30		0.05193	140.42
45	0.500	76.10		0.002 01	115.29		0.003 94	141.37		0.009 85	143.47
	0.250	75.86		0.002 01	115.32		0.002.00	140.72		0.000 02	142.07
	0.051 93	75.59		0.001 01	115.14		0.002.00	139.84		0.003.08	142.55
	0.006 61	75.18	45	0.200	120.97		0.001 33	140.64		0.003 32	142.47
	0.005 08	75.20		0.100	120.46		0.00070	140.04		0.00170	141.57
	0.001 76	75.11		0.020 77	118.14			.1		K- Fe(CN)	.]
60	0.496	77.62		0.005 67	117.51	25	0 200	151 25	25	0.500	158.00
	0.248	77.68		0.002 01	117.01	20	0.100	149.30	20	0.000	152.30
	0.006 56	76.58		0.001 55	116.82		0.020.78	146.63		0.009.85	148 77
	0.006 56	76.62					0.002.65	143.76		0.006.62	148 40
	0.003 28	76.61					0.002.03	143.02		0.005.08	148 11
	K (Ee(CN)	al		K (Mo(CN	<u>a</u>]		0.001 41	143.64		0.003 32	148.77
15	0.500	134.56	15	0 200	178 65		0.001 32	143.31		0.001 41	146.79
	0 100	122 56	10	0 100	174.56	35	0.200	153.26	35	0.500	160.13
	0.009.85	113 29		0.050	170.46		0.100	151.64		0.100	154.88
	0.006.62	112.14		0.010 39	165.21		0.020 77	148.80		0.014 17	151.59
	0.005 08	111.25		0.002 84	162.75		0.003 94	146.92		0.005 02	150.62
	0.003 32	110.11		0.001 00	161.73		0.002 65	145.34		0.003 88	150.11
	0.001 76	110.10		0.000 78	161,74		0.001 40	145.53		0.002 53	149.74
25	0.500	137.88	25	0.200	184.20		0.000 70	144.93			
	0.100	125.83		0.100	180.13	45	0.200	154.71	45	0.500	161.83
	0.009 85	118.23		0.050	176.62		0.100	152.70		0.100	157.01
	0.000 70	114.15		0.010 39	171.34		0.003 94	148.22		0.009 85	153.62
	0.006 62	117.09		0.002 84	169.12		0.002 64	147.04		0.006 61	152.71
	0.005 08	117.18		0.001 00	167.52		0.001 40	147.39		0.005 08	151.48
	0.003 32	115.31		0.000 78	167.55		0.001 40	146.94		0.003 32	151.87
35	0.500	140.11	35	0.200	185.80		0.001 32	147.78		0.001 76	151.74
	0.100	128.60		0.100	180.87		0.000 70	146.68			
	0.014 17	122.31		0.050	176.95	60	0.200	155.86	60	0.500	162.29
	0.010 39	121.44		0.010 39	172.02		0.100	153.20		0.100	156.67
	0.003 88	118.44		0.002 84	170.03		0.002 64	148.96		0.006 61	152.99
	0.002 84	116.73		0.001 00	168.69		0.002 64	148.58		0.006 61	152.69
	0.002 53	117.29		0.000 78	168.41		0.001 32	146.89		0.001 32	151.37

^a Entries in italics represent pycnometer measurements.

stored polythene tanks. The conductivity ranged from 4 to 9 \times 10⁻⁷ Ω^{-1} cm⁻¹. All stock solutions were prepared in calibrated 250-cm³ volumetric flasks and were used within a few days. They were protected from the action of light as much as possible.

Results and Discussion

The ϕ_V results are shown below in Table II.

At concentrations approaching infinite dilution ϕ_V should become a linear function of $c^{1/2}$ in accordance with the predictions of the Debye–Hückel limiting law. This we observed for all the compounds studied (0.001 < c < 0.01 mol dm⁻³, i.e., 0.03 < $c^{1/2}$ < 0.01 mol^{1/2} dm^{-3/2}). Some typical examples of the ϕ_V vs. $c^{1/2}$ plots are shown in Figures 1 and 2 for K₄[Fe(CN)₆]. Debye–Hückel limiting behavior is shown as dotted lines joining the observed ϕ_V curves at low concentrations. Extrapolations to ϕ_V^0 have been achieved in this way.

The derived ϕ_V^0 values (equal to the partial molar volume V_2^0 at infinite dilution) are shown in Table III.

In Figure 3 we show the variation of $\phi_V{}^0$ with temperature for

Journal of Chemical and Engineering Data, Vol. 22, No. 2, 1977 227

Temp, °C	Apparent molar volume at infinite dilution ϕ_V^0 or \overline{V}_2^0 (cm ² mol ⁻¹)								
	K[Ag(CN) ₂]	K₂[Ni(CN)₄]	K ₃ [Co(CN) ₆]	$K_3[Fe(CN)_6]$	K ₄ [Fe(CN) ₆]	K ₄ [Mo(CN) ₈]			
15	69.3	111.6	139.6	141.1	107.7	160.2			
25	71.8	113.3	142.5	146.2	112.3	165.2			
35	73.4	114.8	144.6	148.4	114.2	166.9			
45	75.0	116.4	145.8	150.0	112.7	167.8			
60 <i>ª</i>	76.4	_	146.0	150.0	110.0	167.0			
Estimated error	±0.1	±0.2	±0.3	±0.1	±0.2	±0.3			

^a Dilatometer measurements at 60 °C are experimentally more difficult and are associated with a greater uncertainty.

each of the six compounds. In each case a smooth variation (within the experimental error) of ϕ_V with temperature is found. Four of the six compounds studied show a maximum in ϕ_{V} at temperatures between 30 and 55 °C. This behavior is reminiscent of the behavior of the smaller 1:1 and 2:1 valence type electrolytes studied by Dunn (3). Maxima in ϕ_V have been related to ionic radius and change and have been discussed by several authors (cf. review of Millero (12)). Elsewhere (9, 11) we have shown that the behavior of the complex cyanide ions is consistent with that of the simple small hydrophilic 1:1 and 2:1 valence type electrolytes.

In general, comparison of the present work with that of other workers is made difficult for two reasons: (a) The ϕ_V^0 values reported elsewhere may not be directly comparable because of different methods of extrapolation to infinite dilution. (b) ϕ_V values at other concentrations may not be comparable because of the lack of presentation of raw data.

Indelli and co-workers (1, 8), also using the dilatometer method of Hepler, Stokes and Stokes (6) have measured ϕ_V to very low concentrations (ca. 10^{-4} mol dm⁻³) for three complex cyanides at 25 °C. Indelli and Zamboni (8) have studied K₄[Mo(CN)₈] while Billi, Malatesta, Zamboni, and Indelli (1) have studied $K_3[Fe(CN)_6]$ and $K_4[Fe(CN)_6]$. Debye-Hückel limiting law behavior was observed for $K_4[Mo(CN)_8]$ and $K_3[Fe(CN)_6]$ down to the lowest concentrations studied. These ϕ_V^0 values are therefore comparable to ours and agree well, i.e., $\phi_{\rm M}^0$ $(K_4[Mo(CN)_8], 25 \ ^{\circ}C) = 164.5 \ cm^3 \ mol^{-1}, \ \phi_V^0 \ (K_3[Fe(CN)_6], \ mol^{-1}, \ mol$ 25 °C = 146.4 cm³ mol⁻¹. Indelli and co-workers (1, 8) have not analyzed experimental errors; however, they should be similar to ours. An older value⁴ of ϕ_V^0 (K₃[Fe(CN)₆, 25 °C) = 147.8 cm³ mol⁻¹ appears slightly high.

Billi et al. (1) and Hepler et al. (6) find that ϕ_V for K_4 [Fe(CN)₆] falls sharply to lower values below 10⁻³ mol dm⁻³. Hepler et al. (15) have attributed this behavior to ion-pairing, while Billi et al. (1) believe that the Debye-Hückel limiting law may not be applicable to electrolytes containing multiply charged ions (1, 7, 8) and explain the behavior in terms of the Mayer theory (7, 8). While studying ϕ_V for $K_2[Zn(CN)_4]$ and $K_2[Cd(CN)_4]$ we have observed (10) an even more dramatic fall off of $\phi_{\rm M}$ values at low concentrations. We have quantitatively accounted for this in terms of ionization and hydrolysis equilibria which become important at high dilutions. We believe similar effects to be the cause of the observed low concentration behavior of $K_4[Fe(CN)_6]$. The sixth stepwise stability constant (13) for K_4 [Fe(CN)₆] is ca. 10⁶ indicating a 10% degree of dissociation at 10⁻⁴ mol dm⁻³. Extrapolation to $\phi_{V_{1}}^{0}$ from concentrations below ca. 10⁻³ mol dm⁻³ thus appears to be an unreliable procedure and we prefer the use of the Debye-Hückel limiting law from concentrations $10^{-3} < c < 10^{-2}$ mol dm⁻³. It should be noted that our values of ϕ_V for K₄[Fe(CN)₆] at concentrations

above 10⁻³ mol dm⁻³ are in close agreement with those found by the other workers (1, 6), see Figure 1.

Glossarv

С	molar concentration of solution, mol dm ⁻³
d	density of solution, a cm^{-3}

- density of solvent, g cm⁻³ d₀
- height change in capillary during dilatometer ex- $\Delta h(\text{corr})$ periment corrected for change in hydrostatic head, cm
- M_2 molecular weight of solute, g mol⁻¹
- amount of solute involved in dilatometer experiment, n_2 mol
- \overline{V}_{2}^{0} partial molar volume of solute at infinite dilution, cm³ mol^{-1}
- Δv volume change during dilatometer experiment, cm³

Greek Letters

 $\phi_{\rm V}$

ì	uncertainty	in a	quantity	differential
	anoontainty		uounur,	unioroniuu

apparent mola	r volume, cm ³ r	nol ⁻¹
---------------	-----------------------------	-------------------

$\phi_V{}^0$	apparent mol ¹	molar	volume	at	infinite	dilution,	cm ³
(final							

 $\phi_{\mathsf{V}}^{\mathsf{final}}$, apparent molar volumes of final and initial solutions $\phi_{\sf V}{}^{\sf init}$ involved in dilatometer experiment, cm³ mol⁻¹

Literature Cited

- (1) Billi, A., Malatesta, F., Zamboni, R., Indelli, A., J. Chem. Phys., 61, 4787 (1974)
- Brigelow, J. H., Inorg. Synth., 2, 225.
 Dunn, L. A., Trans. Faraday Soc., 62, 2348 (1966); 64, 1898, 2951 (1968)
- Fernelius, W. C., Burbage, J. J., *Inorg. Synth.*, **2**, 227.
 Furman, N. H., Miller, C. D., *Inorg. Synth.*, **3**, 160.
- (6) Hepler, L. G., Stokes, J. M., Stokes, R. H., Trans. Faraday Soc., 61, 20 (1965)
- (7) Indelli, A., De Santis, R., J. Chem. Phys., 51, 2782 (1969).
- (8) Indelli, A., Zamboni, R., J. Chem. Soc., Faraday Trans. 1, 68, 1831 (9)
- Mathieson, J. G., Curthoys, G., Aust. J. Chem., 28, 975 (1975). (10) Mathieson, J. G., Curthoys, G., J. Chem. Soc., Faraday Trans. 1, 71, 1114 (1975)
- (11) Mathieson, J. G., Curthoys, G., in course of publication.
- Mathieson, J. G., Curthoys, G., in course of publication.
 Millero, F. J., "Water and Aqueous Solutions", R. A. Horne, Ed., Wiley-interscience, New York, N.Y., 1972, Chapter 13.
 Sillen, L. G., Martell, A. E., *Chem. Soc., Spec. Publ.*, No. 17 (1964).
 Vogel, A. I., "Quantitative Inorganic Analysis", 3rd ed, Longmans, New York, N.Y., 1961, p 524.
 Weissburger, A., "Technique of Organic Chemistry", 3rd ed, Interscience, New York, N.Y., 1959.

- (16)Weissburger, A., ref 8, p 234.
- (17) Weissburger, A., ref 6, p 486.(18) Welcher, F. W., "The Analytical Uses of Ethylenediaminetetraacetic Acid", van Norstrand, New York, N.Y., 1957, p 231.

Received for review September 7, 1976. Accepted December 6, 1976.